Advances in Multidimensional Synthetic Aperture Radar Signal Processing
نویسندگان
چکیده
Synthetic Aperture Radar can be considered nowadays as an established and mature technology to obtain high-resolution two-dimensional reflectivity images of the Earth surface in nearly all weather conditions and independently of the day-night cycle. During a first period, ranging from their conception in the 1950s to the beginning of the 1990s, SAR systems were characterized by a single acquisition channel, and it was proven that this technology allows the observation and characterization of the Earth surface in the microwave region of the electromagnetic spectra. At the beginning of the 1990s, SAR technology started to show its important potential with the availability of multichannel or multidimensional SAR system configurations. Among them, it is worth to mention: interferometric techniques (InSAR), using single-or multiple baselines configurations, polarimetric diversity (PolSAR), or the combination of these approaches called polarimetric SAR interferometry (PolInSAR). It is also important to note that in the recent years, the use of time diversity, in combination with any of the previously introduced multidimensional configurations, has emerged as a new and promising research field to improve the analysis of the areas being imaged, but also the observation and characterization of dynamic processes. The importance and interest on the different multidimensional SAR system configurations is partly due to the increase of the number of radar observables but primarily to the fact that the acquired multidimensional signals are sensitive to different biophysical and geophysical properties of the Earth surface and may then be used for quantitative retrieval purposes. Multidimensional SAR data have been shown to be very useful for the monitoring of the Earth surface in a wide range of applications. The spatial diversity exploited in InSAR configurations makes the exploration of the vertical structure of volumetric scenes possible. The complex correlation coefficient, constructed from two complex SAR images, represents here the most important radar observable. In the last 20 years, the sensitivity of the phase component to the terrain topography has been extensively exploited. The most relevant examples are the STRM mission, which provided, for the first time, the Earth topography at an almost global scale and the future Tandem-X mission, that pursues the same objective, but with an improved accuracy. InSAR has also demonstrated an enormous potential for the monitoring of terrain displacements using differential techniques. The amplitude of the complex correlation coefficient revealed to be very useful in diverse applications, like, for instance, volcano's pyroclastic flows monitoring, study and retrieval of …
منابع مشابه
The Object Detection Efficiency in Synthetic Aperture Radar Systems
The main purpose of this paper is to develop the method of characteristic functions for calculating the detection characteristics in the case of the object surrounded by rough surfaces. This method is to be implemented in synthetic aperture radar (SAR) systems using optimal resolution algorithms. By applying the specified technique, the expressions have been obtained for the false alarm and cor...
متن کاملAdvances in Airborne Radar Simulation
Airborne Radar Simulation, in the present context, is the real-time generation of radar displays and other radar outputs, such as data exchanges with the flight computer or other avionics subsystems, consistent with the actual radar and in response to the interaction with the operator, ownship, targets, and the environment. The primary application is flight simulators for man-in-the-loop traini...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies
Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...
متن کاملSpecial issue on Co-prime sampling and arrays
Co-prime sampling and co-prime arrays have recently been shown to improve active and passive sensing in radar and underwater acoustics using both narrowband and wideband signal platforms. Co-prime processing provides a systematical framework for sparse sampling and array configuration with increased aperture and improved spatial resolution. Co-prime based approaches to sampling and arrays can c...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملStatistical Signal Processing for Synthetic Aperture Radar
Synthetic Aperture Radar (SAR) currently has problems in the processing that lead to smearing of the image. We have developed a new method of processing the data using maximum likelihood theory that will remove the smearing leading to superior images. The goal of this project was to write a MATLAB program to simulate a SAR system to test the new processing method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010